Skip to content

Governance Overview

NeuroShard uses a decentralized governance system to manage protocol upgrades. Any changes to the LLM architecture, training algorithms, or economics must go through a formal proposal and voting process.

Why Governance Matters

In a decentralized AI network, the model and economics are tightly coupled:

ComponentEconomic Impact
Training algorithmDetermines reward efficiency
Model architectureAffects hardware requirements
Inference speedImpacts market pricing
Layer distributionInfluences node earnings

Changing one component without adjusting others can:

  • Inflate or deflate NEURO earnings unfairly
  • Exclude nodes that don't meet new requirements
  • Break verification mechanisms

Governance ensures all stakeholders have a voice in these decisions.

Core Principles

1. Transparency

All proposed changes are public. Anyone can review the technical specification and economic impact before voting.

2. Economic Parity

Every proposal must include an Economic Impact Analysis that quantifies how earnings change.

3. Stake-Weighted Voting

Voting power is proportional to staked NEURO. Those with skin in the game make decisions.

4. Grace Periods

Approved changes include upgrade windows so nodes have time to adapt.

The NEP Process

NEP = NeuroShard Enhancement Proposal

┌──────────────────────────────────────────────────────────────────┐
│                        NEP LIFECYCLE                              │
├──────────────────────────────────────────────────────────────────┤
│                                                                  │
│   ┌─────┐    ┌────────┐    ┌────────┐    ┌──────────┐    ┌──────┐│
│   │DRAFT│───►│ REVIEW │───►│ VOTING │───►│SCHEDULED │───►│ACTIVE││
│   └─────┘    └────────┘    └────────┘    └──────────┘    └──────┘│
│      │           │             │              │              │    │
│      │           │             │              │              │    │
│   Author      7 days        7 days      Activation       Applied │
│   submits    technical    stake-weighted    block          to     │
│              review          vote           set          network  │
│                                                                   │
└───────────────────────────────────────────────────────────────────┘

NEP Types

TypeCodeDescription
ArchitectureNEP-ARCHModel changes (attention, layers, embeddings)
EconomicsNEP-ECONReward rates, fees, staking parameters
TrainingNEP-TRAINDiLoCo params, gradient handling, aggregation
NetworkNEP-NETP2P protocol, gossip, routing
GovernanceNEP-GOVChanges to governance itself
EmergencyNEP-EMERGCritical security patches (fast-track)

Governance at a Glance

┌─────────────────────────────────────────────────────────────┐
│                    GOVERNANCE FLOW                          │
├─────────────────────────────────────────────────────────────┤
│                                                             │
│   ┌─────────────┐                                           │
│   │  PROPOSER   │  Stake: 100+ NEURO                        │
│   │  (Any Node) │  Fee: 10 NEURO (burned)                   │
│   └──────┬──────┘                                           │
│          │                                                  │
│          ▼                                                  │
│   ┌─────────────┐                                           │
│   │     NEP     │  Title, Motivation, Specification         │
│   │  PROPOSAL   │  Parameter Changes, Economic Impact       │
│   └──────┬──────┘                                           │
│          │                                                  │
│          ▼                                                  │
│   ┌─────────────┐                                           │
│   │   VOTING    │  1 NEURO staked = 1 vote                  │
│   │   (7 days)  │  66% approval, 20% quorum                 │
│   └──────┬──────┘                                           │
│          │                                                  │
│     ┌────┴────┐                                             │
│     ▼         ▼                                             │
│ ┌───────┐ ┌────────┐                                        │
│ │APPROVE│ │ REJECT │                                        │
│ └───┬───┘ └────────┘                                        │
│     │                                                       │
│     ▼                                                       │
│ ┌───────────┐                                               │
│ │ SCHEDULED │  Grace period (7-30 days)                     │
│ │           │  Nodes upgrade                                │
│ └─────┬─────┘                                               │
│       │                                                     │
│       ▼                                                     │
│ ┌───────────┐                                               │
│ │  ACTIVE   │  New parameters enforced                      │
│ │           │  Protocol version bumped                      │
│ └───────────┘                                               │
│                                                             │
└─────────────────────────────────────────────────────────────┘

Example: Adding Multi-Token Prediction

Here's how a major training change would be proposed:

python
nep = create_proposal(
    title="Add Multi-Token Prediction Training",
    nep_type=NEPType.TRAINING,
    
    economic_impact=EconomicImpact(
        training_efficiency_multiplier=2.0,  # 2x faster training
        training_reward_multiplier=1.0,      # Same reward per batch
        net_earnings_change_percent=0.0,     # Neutral (quality gains)
    ),
    
    upgrade_path=UpgradePath(
        grace_period_days=14,
        backward_compatible=True,
    ),
)

The economic impact shows:

  • Training becomes 2x more efficient
  • Per-batch rewards stay the same
  • Net effect: Model improves faster, making tokens more valuable

This ensures miners aren't suddenly earning half as much while the network benefits from faster progress.

Released under the Apache License 2.0.