Installation
Complete guide to installing NeuroShard on different platforms.
System Requirements
Minimum Requirements
| Component | Minimum | Recommended |
|---|---|---|
| RAM | 2GB | 8GB+ |
| Storage | 1GB | 10GB+ |
| CPU | 2 cores | 4+ cores |
| Python | 3.9 | 3.11 |
| Network | 10 Mbps | 100 Mbps+ |
GPU Support
NeuroShard automatically detects and uses available GPUs:
| GPU | Support Level |
|---|---|
| NVIDIA CUDA | ✅ Full support (recommended) |
| NVIDIA Jetson (ARM64) | ✅ Full support |
| Apple Metal (M1/M2/M3) | ✅ Full support |
| AMD ROCm | ⚠️ Experimental |
| CPU Only | ✅ Supported (slower) |
Installation Methods
Method 1: pip (Recommended)
NeuroShard is published to PyPI as nexaroa.
Basic Install (CPU)
# Create a virtual environment (recommended)
python -m venv neuroshard-env
source neuroshard-env/bin/activate # On Windows: neuroshard-env\Scripts\activate
# Install NeuroShard (without PyTorch)
pip install nexaroaWith GPU Support (x86 Linux/Windows)
# Install with GPU support - automatically installs PyTorch from PyPI
pip install nexaroa[gpu]With GUI Support (Desktop App)
# Install with GUI libraries
pip install nexaroa[gui]
# Or install everything (GPU + GUI)
pip install nexaroa[full]Platform-Specific PyTorch
PyTorch is an optional dependency because different platforms need different builds:
NVIDIA CUDA (x86 Linux/Windows)
# Option A: Use the [gpu] extra (simplest)
pip install nexaroa[gpu]
# Option B: Install specific CUDA version first
pip install torch --index-url https://download.pytorch.org/whl/cu121
pip install nexaroaApple Silicon (M1/M2/M3/M4)
# PyTorch from PyPI includes Metal (MPS) support
pip install nexaroa[gpu]NVIDIA Jetson (ARM64)
For Jetson Orin, AGX, or other Jetson devices, install PyTorch from NVIDIA first:
# Step 1: Install NVIDIA's PyTorch (JetPack 6.x)
pip install torch torchvision --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v60
# Step 2: Install NeuroShard (no [gpu] needed - torch already installed!)
pip install nexaroa
# Step 3: Run with CUDA
neuroshard --token YOUR_TOKEN --device cudaWhy separate steps for Jetson?
Jetson uses ARM64 architecture with a custom CUDA build. NVIDIA provides pre-built PyTorch wheels optimized for Jetson that aren't available on PyPI. By pre-installing torch from NVIDIA, pip sees it's already satisfied and won't try to download an incompatible version.
Method 2: Docker
Run NeuroShard in a Docker container:
# Pull the official image
docker pull neuroshard/node:latest
# Run with GPU support
docker run --gpus all -p 8000:8000 -p 9000:9000 \
-e NEUROSHARD_TOKEN=YOUR_TOKEN \
neuroshard/node:latestDocker Compose
version: '3.8'
services:
neuroshard-node:
image: neuroshard/node:latest
ports:
- "8000:8000"
- "9000:9000"
environment:
- NEUROSHARD_TOKEN=${NEUROSHARD_TOKEN}
volumes:
- neuroshard_data:/data
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]
volumes:
neuroshard_data:Verify Installation
After installation, verify everything works:
# Check version
neuroshard --version
# Check available options
neuroshard --help
# Test GPU detection
python -c "import torch; print(f'CUDA: {torch.cuda.is_available()}, MPS: {torch.backends.mps.is_available() if hasattr(torch.backends, \"mps\") else False}')"Device Selection
NeuroShard auto-detects the best device, but you can override it:
# Auto-detect (default)
neuroshard --token YOUR_TOKEN --device auto
# Force CUDA
neuroshard --token YOUR_TOKEN --device cuda
# Force Apple Metal
neuroshard --token YOUR_TOKEN --device mps
# Force CPU
neuroshard --token YOUR_TOKEN --device cpuPlatform-Specific Notes
Windows
- Install Python: Download from python.org
- Enable Long Paths: Run as admin:powershell
Set-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1 - Install CUDA Toolkit (if using NVIDIA GPU): Download from NVIDIA
macOS
- Install Homebrew:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" - Install Python:
brew install python@3.11 - For M1/M2/M3: PyTorch automatically uses Metal Performance Shaders
Linux (Ubuntu/Debian)
# Install dependencies
sudo apt update
sudo apt install python3 python3-pip python3-venv
# For NVIDIA GPU
sudo apt install nvidia-driver-535 nvidia-cuda-toolkitLinux (Fedora/RHEL)
sudo dnf install python3 python3-pip
# For NVIDIA GPU
sudo dnf install akmod-nvidia xorg-x11-drv-nvidia-cudaJetson (JetPack)
# Ensure JetPack is installed (includes CUDA, cuDNN)
# Then install PyTorch from NVIDIA
pip install torch torchvision --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v60
# Install NeuroShard
pip install nexaroaUpdating
pip
pip install --upgrade nexaroaUninstalling
pip
pip uninstall nexaroaRemove Data
# Remove checkpoints and cache
rm -rf ~/.neuroshard
# On Windows
rd /s /q %USERPROFILE%\.neuroshardTroubleshooting
PyTorch Not Found
If you get ModuleNotFoundError: No module named 'torch':
# Install with GPU support
pip install nexaroa[gpu]
# Or install torch manually first
pip install torch
pip install nexaroaCUDA Not Detected
If GPU isn't detected on a system with NVIDIA GPU:
# Check if torch sees CUDA
python -c "import torch; print(torch.cuda.is_available())"
# If False, reinstall torch with CUDA
pip uninstall torch
pip install torch --index-url https://download.pytorch.org/whl/cu121Jetson: Wrong PyTorch Version
If you accidentally installed x86 torch on Jetson:
# Remove wrong version
pip uninstall torch torchvision
# Install NVIDIA's version
pip install torch torchvision --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v60Next Steps
- Running a Node — Configure and start your node
- Quick Start — 5-minute setup guide
- CLI Reference — All command options
