Installation
Complete guide to installing NeuroShard on different platforms.
System Requirements
Minimum Requirements
| Component | Minimum | Recommended |
|---|---|---|
| RAM | 2GB | 8GB+ |
| Storage | 1GB | 10GB+ |
| CPU | 2 cores | 4+ cores |
| Python | 3.10 | 3.11 |
| Network | 10 Mbps | 100 Mbps+ |
GPU Support
NeuroShard automatically detects and uses available GPUs:
| GPU | Support Level |
|---|---|
| NVIDIA CUDA | ✅ Full support (recommended) |
| Apple Metal (M1/M2/M3) | ✅ Full support |
| AMD ROCm | ⚠️ Experimental |
| CPU Only | ✅ Supported (slower) |
Installation Methods
Method 1: pip (Recommended)
The simplest way to install NeuroShard:
bash
# Create a virtual environment (recommended)
python -m venv neuroshard-env
source neuroshard-env/bin/activate # On Windows: neuroshard-env\Scripts\activate
# Install NeuroShard
pip install nexaroaWith GPU Support (NVIDIA)
bash
# Install PyTorch with CUDA first
pip install torch --index-url https://download.pytorch.org/whl/cu118
# Then install NeuroShard
pip install nexaroaWith GPU Support (Apple Silicon)
PyTorch on macOS with Apple Silicon automatically uses Metal:
bash
pip install torch
pip install nexaroaMethod 2: Docker
Run NeuroShard in a Docker container:
bash
# Pull the official image
docker pull neuroshard/node:latest
# Run with GPU support
docker run --gpus all -p 8000:8000 -p 9000:9000 \
-e NEUROSHARD_TOKEN=YOUR_TOKEN \
neuroshard/node:latestDocker Compose
yaml
version: '3.8'
services:
neuroshard-node:
image: neuroshard/node:latest
ports:
- "8000:8000"
- "9000:9000"
environment:
- NEUROSHARD_TOKEN=${NEUROSHARD_TOKEN}
volumes:
- neuroshard_data:/data
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]
volumes:
neuroshard_data:Verify Installation
After installation, verify everything works:
bash
# Check version
neuroshard --version
# Output: NeuroShard 0.0.6
# Check available options
neuroshard --help
# Test without running (shows GPU detection)
python -c "import torch; print(f'CUDA: {torch.cuda.is_available()}')"Platform-Specific Notes
Windows
- Install Python: Download from python.org
- Enable Long Paths: Run as admin:powershell
Set-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1 - Install CUDA Toolkit (if using NVIDIA GPU): Download from NVIDIA
macOS
- Install Homebrew:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" - Install Python:
brew install python@3.11 - For M1/M2/M3: PyTorch automatically uses Metal Performance Shaders
Linux (Ubuntu/Debian)
bash
# Install dependencies
sudo apt update
sudo apt install python3 python3-pip python3-venv
# For NVIDIA GPU
sudo apt install nvidia-driver-535 nvidia-cuda-toolkitLinux (Fedora/RHEL)
bash
sudo dnf install python3 python3-pip
# For NVIDIA GPU
sudo dnf install akmod-nvidia xorg-x11-drv-nvidia-cudaUpdating
pip
bash
pip install --upgrade nexaroaUninstalling
pip
bash
pip uninstall nexaroaRemove Data
bash
# Remove checkpoints and cache
rm -rf ~/.neuroshard
# On Windows
rd /s /q %USERPROFILE%\.neuroshardNext Steps
- Running a Node — Configure and start your node
- Quick Start — 5-minute setup guide
- CLI Reference — All command options
