Skip to content

Installation

Complete guide to installing NeuroShard on different platforms.

System Requirements

Minimum Requirements

ComponentMinimumRecommended
RAM2GB8GB+
Storage1GB10GB+
CPU2 cores4+ cores
Python3.93.11
Network10 Mbps100 Mbps+

GPU Support

NeuroShard automatically detects and uses available GPUs:

GPUSupport Level
NVIDIA CUDA✅ Full support (recommended)
NVIDIA Jetson (ARM64)✅ Full support
Apple Metal (M1/M2/M3)✅ Full support
AMD ROCm⚠️ Experimental
CPU Only✅ Supported (slower)

Installation Methods

NeuroShard is published to PyPI as nexaroa.

Basic Install (CPU)

bash
# Create a virtual environment (recommended)
python -m venv neuroshard-env
source neuroshard-env/bin/activate  # On Windows: neuroshard-env\Scripts\activate

# Install NeuroShard (without PyTorch)
pip install nexaroa

With GPU Support (x86 Linux/Windows)

bash
# Install with GPU support - automatically installs PyTorch from PyPI
pip install nexaroa[gpu]

With GUI Support (Desktop App)

bash
# Install with GUI libraries
pip install nexaroa[gui]

# Or install everything (GPU + GUI)
pip install nexaroa[full]

Platform-Specific PyTorch

PyTorch is an optional dependency because different platforms need different builds:

NVIDIA CUDA (x86 Linux/Windows)

bash
# Option A: Use the [gpu] extra (simplest)
pip install nexaroa[gpu]

# Option B: Install specific CUDA version first
pip install torch --index-url https://download.pytorch.org/whl/cu121
pip install nexaroa

Apple Silicon (M1/M2/M3/M4)

bash
# PyTorch from PyPI includes Metal (MPS) support
pip install nexaroa[gpu]

NVIDIA Jetson (ARM64)

For Jetson Orin, AGX, or other Jetson devices, install PyTorch from NVIDIA first:

bash
# Step 1: Install NVIDIA's PyTorch (JetPack 6.x)
pip install torch torchvision --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v60

# Step 2: Install NeuroShard (no [gpu] needed - torch already installed!)
pip install nexaroa

# Step 3: Run with CUDA
neuroshard --token YOUR_TOKEN --device cuda

Why separate steps for Jetson?

Jetson uses ARM64 architecture with a custom CUDA build. NVIDIA provides pre-built PyTorch wheels optimized for Jetson that aren't available on PyPI. By pre-installing torch from NVIDIA, pip sees it's already satisfied and won't try to download an incompatible version.

Method 2: Docker

Run NeuroShard in a Docker container:

bash
# Pull the official image
docker pull neuroshard/node:latest

# Run with GPU support
docker run --gpus all -p 8000:8000 -p 9000:9000 \
  -e NEUROSHARD_TOKEN=YOUR_TOKEN \
  neuroshard/node:latest

Docker Compose

yaml
version: '3.8'
services:
  neuroshard-node:
    image: neuroshard/node:latest
    ports:
      - "8000:8000"
      - "9000:9000"
    environment:
      - NEUROSHARD_TOKEN=${NEUROSHARD_TOKEN}
    volumes:
      - neuroshard_data:/data
    deploy:
      resources:
        reservations:
          devices:
            - driver: nvidia
              count: all
              capabilities: [gpu]

volumes:
  neuroshard_data:

Verify Installation

After installation, verify everything works:

bash
# Check version
neuroshard --version

# Check available options
neuroshard --help

# Test GPU detection
python -c "import torch; print(f'CUDA: {torch.cuda.is_available()}, MPS: {torch.backends.mps.is_available() if hasattr(torch.backends, \"mps\") else False}')"

Device Selection

NeuroShard auto-detects the best device, but you can override it:

bash
# Auto-detect (default)
neuroshard --token YOUR_TOKEN --device auto

# Force CUDA
neuroshard --token YOUR_TOKEN --device cuda

# Force Apple Metal
neuroshard --token YOUR_TOKEN --device mps

# Force CPU
neuroshard --token YOUR_TOKEN --device cpu

Platform-Specific Notes

Windows

  1. Install Python: Download from python.org
  2. Enable Long Paths: Run as admin:
    powershell
    Set-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
  3. Install CUDA Toolkit (if using NVIDIA GPU): Download from NVIDIA

macOS

  1. Install Homebrew: /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
  2. Install Python: brew install python@3.11
  3. For M1/M2/M3: PyTorch automatically uses Metal Performance Shaders

Linux (Ubuntu/Debian)

bash
# Install dependencies
sudo apt update
sudo apt install python3 python3-pip python3-venv

# For NVIDIA GPU
sudo apt install nvidia-driver-535 nvidia-cuda-toolkit

Linux (Fedora/RHEL)

bash
sudo dnf install python3 python3-pip

# For NVIDIA GPU
sudo dnf install akmod-nvidia xorg-x11-drv-nvidia-cuda

Jetson (JetPack)

bash
# Ensure JetPack is installed (includes CUDA, cuDNN)
# Then install PyTorch from NVIDIA
pip install torch torchvision --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v60

# Install NeuroShard
pip install nexaroa

Updating

pip

bash
pip install --upgrade nexaroa

Uninstalling

pip

bash
pip uninstall nexaroa

Remove Data

bash
# Remove checkpoints and cache
rm -rf ~/.neuroshard

# On Windows
rd /s /q %USERPROFILE%\.neuroshard

Troubleshooting

PyTorch Not Found

If you get ModuleNotFoundError: No module named 'torch':

bash
# Install with GPU support
pip install nexaroa[gpu]

# Or install torch manually first
pip install torch
pip install nexaroa

CUDA Not Detected

If GPU isn't detected on a system with NVIDIA GPU:

bash
# Check if torch sees CUDA
python -c "import torch; print(torch.cuda.is_available())"

# If False, reinstall torch with CUDA
pip uninstall torch
pip install torch --index-url https://download.pytorch.org/whl/cu121

Jetson: Wrong PyTorch Version

If you accidentally installed x86 torch on Jetson:

bash
# Remove wrong version
pip uninstall torch torchvision

# Install NVIDIA's version
pip install torch torchvision --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v60

Next Steps

Released under the Apache License 2.0.